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ABSTRACT: Since the advent of high-throughput screening
(HTS), there has been an urgent need for methods that
facilitate the interrogation of large-scale chemical biology data
to build a mode of action (MoA) hypothesis. This can be done
either prior to the HTS by subset design of compounds with
known MoA or post HTS by data annotation and mining. To
enable this process, we developed a tool that compares
compounds solely on the basis of their bioactivity: the
chemical biological descriptor “high-throughput screening fingerprint” (HTS-FP). In the current embodiment, data are
aggregated from 195 biochemical and cell-based assays developed at Novartis and can be used to identify bioactivity relationships
among the in-house collection comprising ∼1.5 million compounds. We demonstrate the value of the HTS-FP for virtual
screening and in particular scaffold hopping. HTS-FP outperforms state of the art methods in several aspects, retrieving bioactive
compounds with remarkable chemical dissimilarity to a probe structure. We also apply HTS-FP for the design of screening
subsets in HTS. Using retrospective data, we show that a biodiverse selection of plates performs significantly better than a
chemically diverse selection of plates, both in terms of number of hits and diversity of chemotypes retrieved. This is also true in
the case of hit expansion predictions using HTS-FP similarity. Sets of compounds clustered with HTS-FP are biologically
meaningful, in the sense that these clusters enrich for genes and gene ontology (GO) terms, showing that compounds that are
bioactively similar also tend to target proteins that operate together in the cell. HTS-FP are valuable not only because of their
predictive power but mainly because they relate compounds solely on the basis of bioactivity, harnessing the accumulated
knowledge of a high-throughput screening facility toward the understanding of how compounds interact with the proteome.

A central goal of chemical biology is to understand the
underlying mechanisms of biological systems by their

response to certain compounds. With the advent of high-
throughput screening (HTS), relationships between com-
pounds and biological entities have been studied on an
enormous scale. Despite the accessibility of large databases of
proprietary and public data, there is urgent need for methods
that facilitate the interrogation and mining of this information
to build hypotheses on the mode of action of compounds
(MoA) and also on the cellular processes perturbed in
phenotypic screens. Typically, MoA hypotheses are based on
the assumption that structurally chemical compounds are likely
to share similar properties and will bind to the same group of
proteins.1 Chemometric approaches that rely on the use
chemical descriptors to build quantitative structure−activity
relationships (QSAR) have been geared toward predicting
activity against a target. One reason why these models often do
not live up to expectations is the rugged and high dimensional
nature of the activity landscape.2,3 Furthermore, by con-
struction chemical similarity cannot explain the activity of a
compound against a specific pathway or groups of pathways
that may or may not be known. Compounds that incur similar
phenotypes and yet are structurally diverse are therefore often

overlooked because the traditional searching methods do not
take into account the biological similarity of compounds.
Recently, there has been an increasing awareness that the

cellular response of a compound can be described without the
chemical structure, focusing instead on the chemical biology of
the compound through its interactions with the proteome. This
has largely entailed organizing the screening data for a
compound obtained against a panel of targets and/or cell
lines into a fingerprint that is used to describe that compound.
In seminal work performed at the NCI, the growth inhibition of
60 cancer cell lines was evaluated for a panel of compounds and
incorporated into a fingerprint that could be used to compare
the similarity of compounds.4 These fingerprints were then
employed as input to predict mechanism of action with neural
networks5 and to search for target specific compounds.6 Kauvar
et al.,7 on the other hand, derived “affinity fingerprints” based
on a compound’s interaction with specific targets and used
these fingerprints to predict ligand affinities. In a subsequent
study, affinity fingerprints were then assessed for the design of
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diverse sets of compounds and sets of compounds with
enriched activity for a given target.8 In a similar vein, Fliri et
al.9,10 derived fingerprints based on a compound’s interaction
with specific targets, which they termed “biospectra,” and
predicted simultaneous interactions of new molecules with the
proteome. The authors used percent inhibition values of 1,597
compounds against 92 targets, and concluded that comparing
biological activity profiles of molecules provided an unbiased

means for establishing quantitative relationships between
chemical structure and broad biological effects. Further studies
by Fliri et al.11 showed that drug side effects could also be
linked to their activity spectra and therefore clinical effect
profiles of drugs could be predicted. Plouffe et al.12 used activity
profiles derived from 131 high-throughput cellular and
biochemical screens to predict targets for antimalarial drugs.
In their study, compounds with known and unknown targets

Figure 1. (A) Compound recall and (B) scaffold recall benchmark comparing the performance of HTS-FP and ECFP4 similarity methods by means
of ROC scores. For each target, the y-axis plots the HTS-FP scores, and the x-axis the ECFP4 ROC scores. The color code identifies target families.
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were clustered on the basis of their activity profiles, and a “guilt
by association” target prediction method based on target
enrichment within clusters was used. In a similar way, Cheng et
al.13 recently used the bioactivity profile of compounds to
predict their biological targets. Using bioactivity profiles derived
against the NCI-60 cell lines, 45% of compound-target
associations annotated in public databases could be affirmed.
Their results also suggest the possible application of bioactivity
similarity profiles in searching for novel chemical matter or
“scaffold hopping”. At the crux of these reports is the finding
that a broad panel of single concentration, HTS data can be
used to derive meaningful relationships between compounds
without any information about chemical structure.
In our work, we investigate the applicability of bioactivity

comparisons between compounds as a means for virtual
screening and library design on an unprecedented scale. We
have developed a set of biological descriptors, termed “high-
throughput screening fingerprint” (HTS-FP), which translates
the wealth of HTS data into a form that can be readily
interrogated by computational methods. We use data from 195
assays developed at Novartis over a time frame of 10 years,
which cover a broad variety of protein families and technologies
including fluorescence intensity, radioactivity, and mass
spectrometry (Supplementary Tables S1−3). By comparing
the similarity of compounds based on their HTS-FP, we
elucidate bioactivity relationships among the in-house collec-
tion of ∼1.5 million compounds. We have intentionally
incorporated into our fingerprint both biochemical and cell-
based assays for various reasons. The clear advantage of using
biochemical assay data is that it adds target-specificity to the
fingerprint. This is especially powerful in cases were traditional
descriptors would not perform well, as would be the case for

two structurally different compounds that inhibit the same
enzyme by binding to different pockets. The cell-based assay
data, in turn, provide another layer of complexity to the
fingerprint. The advantage of utilizing cell-based assays is that
many of these assays target an entire functional pathway or
high-level phenotype, rather than the ability of a molecule to
bind to a specific protein. Therefore, comparing compounds’
cell-based activity profiles can lead to the identification of
compounds that produce a similar phenotype yet not
necessarily operate through the same mode of action.
Conversely, comparing activity profiles of independent
biochemical assays could not easily lead to such associations.
The objective of this work is to demonstrate the value of the

HTS-FP for various applications such as virtual screening,
scaffold hopping, and subset design. When applied to virtual
screening, HTS-FP has the capability of discovering novel
active chemotypes for a phenotype (scaffold hopping)14

because it uses no structural information when comparing
compounds. Also, HTS-FP can be employed to generate
subsets of biodiverse compounds, allowing for more efficient
identification of active compounds when entire libraries cannot
be screened. Finally, we demonstrate that clustering com-
pounds by means of HTS-FP is biologically meaningful. By
looking at the GO term enrichments within HTS-FP clusters,
we show that compounds grouped on the basis of HTS-FP
tend to modulate protein targets with related biological
function.
Taken together, we show that HTS-FP can transcend the

limitations of molecular structure similarity comparisons,
capturing information on the bioactivity of compounds and
their impact on cellular pathways regardless of chemical
structure. We establish a method by which the vast data

Figure 2. Examples of compounds recalled with ECFP4 and HTS-FP given a set of reference compounds belonging to a particular scaffold. The
OVERLAP compounds are those compounds retrieved by both methods. Compounds C1, C4, and C5 represent the probe scaffold sets.
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generated by an HTS facility can be harnessed to help
understand past experiments as well as to generate hypotheses
about current and future screening results.

■ RESULTS AND DISCUSSION
We explain the HTS-FP and define a metric for similarity and
clustering (Methods). Three applications of HTS-FP are
described: (1) virtual screening and scaffold hopping, (2)
biodiversity selection of HTS plates, and (3) biological
relevance of HTS-FP clusters.
1. HTS-FP Applied to Virtual Screening and Scaffold

Hopping. A primary goal of virtual screening is the
identification of bioactive molecules against a target given hit
compounds used as reference. Traditionally, structurally similar
compounds are sought in the assumption that they will also
show similar biological properties. By contrast, HTS-FP directly
identify compounds that show similar biological profiles.
In Figure 1, we compare the performance of a state-of-the-art

structural similarity approach (ECFP4, see Methods) against
HTS-FP both in terms of hit rate (compound recall) and
diversity of chemotypes retrieved (scaffold recall). Performance
is assessed by receiver-operator curves (ROC) scores

(Methods). Random selection corresponds to a ROC score
of 0.5, whereas a score of 1.0 means perfect recall of active
compounds.
Overall, HTS-FP performance depends on the target class

but ranges from acceptable (ROC = 0.66) to excellent (ROC =
0.98). In compound recall (Figure 1A), however, ECFP4
performs consistently better than HTS-FP throughout the
target families, with kinases having the highest scores, and
ABCB1 transporter being a noticeable exception. This is
probably due to the fact that the active chemotypes for kinases
are extensively studied, well-defined, and populated in the
library. Overall, chemical similarity works extremely accurately
(most ROC scores > 0.90) when several chemotypes are
combined together as probes (Figure 1A) and thus the hit rate
in compound recall is higher than that obtained with HTS-FP
similarity. On the other hand, in the case of scaffold recall
(Figure 1B) both HTS-FP and ECFP4 perform evenly with
HTS-FP outperforming for a few targets, especially in the case
of kinases and enzymes. Importantly, the performance of HTS-
FP is independent of chemical structure by design; therefore
HTS-FP excels at recalling remarkably diverse chemical matter
as illustrated in Figures 2 and 3.

Figure 3. (Top panel) Compounds C20−C28 recalled with a xanthine derivative scaffold, of which C19 is a representative, and HTS-FP similarity.
ECFP4 yields no recalls for this scaffold. The recalls were retrieved via relevant HTS-FP assays highlighted in the lower panel, and written over the
arrows. Highlighted in yellow are the phenotypic pathway assays. The protocol for the selection of relevant assays in the lower panel is detailed in
Supporting Information.
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The ABCB1 transporter is a major efflux pump, involved in
multidrug resistance. Figure 2 highlights the use of the natural
product epothilone (C1),15 a known anticancer agent and
inhibitor of ABCB1,16 as a probe to retrieve new scaffolds.
While chemical similarity fails to retrieve actives in the top 1%
ranked list, HTS-FP instead retrieves active compounds with
scaffolds that have no structural overlap with epothilone and
may thus be smaller in size and present different physicochem-
ical properties (e.g., drug-like molecule C2). Similarly,
dizocilpine (C4), a non-competitive antagonist of the NMDA
receptor, retrieves very structurally different inhibitors such as
quinoxalines, whereas the scaffolds retrieved by chemical
similarity are very similar to each other.
In the case of PDE4C, chemical similarity searches using the

anti-inflammatory drug rolipram as a probe retrieve only
compounds that have at least one major chemical group in
common with rolipram (i.e., the dimethoxy phenyl group,
cyclopentane, or pyrrol ring). Even though there is some
overlap in the compounds retrieved by chemical similarity and
HTS-FP, HTS-FP is able to recall compounds in broadly
different patent and chemical spaces. Figure 3 shows active
recalls against PDE4C found in the top 1% HTS-FP similarity
to probe C19, a xanthine derivative. While chemical similarity
yields no active recalls in the top 1%, HTS-FP instead finds
compounds C20−28 bearing minimal similarity to the probe.
The lower panel shows a visualization of the HTS-FP limited to
the assays that contribute the most to the HTS-FP similarity.
Based on this heat map, arrows describe the relevant assays in
common between the probe and each of the recalls. For
example, the probe finds recall C25 through enzymes E1 and
E5 and relates to recall C20 through kinases K1−3. This
indicates that the recalls participate in different cell mechanisms
and probably explains the differences in chemical structure
among them and with the probe.
In this PDE4C example, phenotypic pathway assays have a

significant contribution to the HTS-FP similarity as compared
to any other target class. A result from this is that compounds
recalled do not necessarily share the same targets or pathways
and range from specific to non-specific inhibitors of PDE4C.
Even if many xanthine derivatives tend to behave as non-
specific PDE inhibitors,17 public data shows probe C19 is
specific to PDE4C. Recalls C25, C27, and C28 are also specific
to PDE4, whereas compound C21 is non-specific (targeting all
PDE3−5), and xanthine derivative C24 targets all PDE3−9.
We explore to what extent a bioactivity-based similarity

method (HTS-FP) correlates with a chemical structure-based
method (ECFP4) (Figure 4) by comparing similarity values for
a random sample of ∼10% (100,000) of the pairwise
interactions of molecules from the previous study. Figure 4
shows that the linear correlation is poor (R = 0.022); however,
for some pairs both ECFP4 and HTS-FP similarities are high
(top right quadrant). Looking at the conditional distributions
(Supporting Information 2) for ECFP4 and HTS-FP
similarities, we find that even if the metrics are not linearly
correlated, pairs with similar biological fingerprints tend to have
similar chemical structures. However, there are a lot of pairs for
which ECFP similarity is low and yet the compounds have
similar bioactivities. We attribute this to the fact that HTS-FP is
able to capture information from a phenotype that consists of
multiple targets and therefore multiple chemotypes.
In practice, ECFP and HTS-FP present complementary

advantages. ECFP4, on the one hand, is very reliable in both
recalling compounds and even scaffold hopping when the set of

probes is chemically diverse. HTS-FP, on the other hand, is
independent of the chemical structure of the probes and
requires a priori bioactivity data on the compounds, and its
somewhat weaker recall is greatly compensated for by its
inherent ability to yield completely novel chemical matter that
is inferred only through biology.

2. Plate Diversity Selection. State-of-the-art HTS screen-
ing systems currently enable screening of 1−5 million
compounds in a few weeks.18 Yet factors other than
automation, namely, cost, assay throughput, reagent availability,
and time, often limit the size of the compound-screening
library. Past studies by Sukuru et al.18 show that screening sets
of compounds with increased chemical diversity (i.e., focused
screening) present an attractive option to full HTS campaigns.
Hit compounds from plates carefully chosen can be expanded
using virtual screening approaches into an automated “cherry-
picked” set for follow-up tests (Figure 5). We carry out a
retrospective validation protocol to evaluate the hit rate of a
reduced screening set (plate diversity selection) in comparison
to the complete compound collection. The key to this
approach, namely, screening a subset of compounds followed
by cherry-picked expansion, is to maximize the information
content obtained from the initial screen and to exploit this
information during expansion. Here we demonstrate the
advantages of using HTS-FP to design the initial screen and
subsequently expand upon the initial hits.
After clustering the entire collection by their HTS-FPs, we

pick a reduced set of 710 384-well HTS plates19 that maximizes
the biologically diversity of compounds, i.e., the number of
HTS-FP clusters the compounds fall into. We use this diverse
plate set for an initial virtual screening, followed by 10,000-
compound cherry-picking expansion using HTS-FP similarity.
We compare the performance of this biodiverse set of plates to a
chemically diverse plate set selected instead by maximizing the
amount of different scaffolds and expanding the hits using
chemical similarity (ECFP4). A random set of HTS plates
serves as a control. Random selection of plates yields on
average 15% of the collection actives, which is expected since
710 plates represent 14% of the collection (5029 plates).
The performance of each of the plate diversity selection

methods was assessed across 13 in-house assays. Figure 6 shows
the percentage of active compounds retrieved in the 710-plate
diversity library (hereafter called “seeds”) and the yield in active
hits obtained by expanding the “seeds” with virtual screening by
means of 10,000 cherry-picked compounds.

Figure 4. HTS-FP similarity as a function of ECFP4 similarity for
100,000 random pairs of the 10,259 molecules considered in the recall
studies.
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Regarding the yield in “seed” compounds (Figure 6A), HTS-
FP diversity selection outperforms both ECFP4 and random
selection in 10 of 13 assays, with the exception of GPCR, Ion
Channel, and the Serine Protease assays. Regarding the total
yield in actives after expansion, HTS-FP still proves more
efficient in 12/13 of the assays with the exception of Kinase 3
assay. This could be due to the relative overrepresentation in
the collection of structurally similar kinase inhibitors, inherently
predisposing ECFP4 for high-accuracy retrieval. HTS-FP has
outstanding performance in Ion Channel, Kinase 1, and
Bacterial Pathway assays.
The diversity of scaffolds obtained from a screen is just as, if

not more, important than the total number of hits, as this
allows chemists to pursue different avenues during lead
optimization. It would be reasonable to expect that plate
selection based on chemical diversity is likely to yield more

diverse scaffolds than its biodiverse counterpart. Indeed, when
considering solely the number of active “seed” scaffolds,
chemical diversity outperforms biological diversity in 8 of 13
assays (Figure 6B). Even so, after expansion, this trend is
reversed and bioactivity-based methods (HTS-FP plate
selection and expansion) outperform random or chemical
structure based methods in all but one assay. This superior
performance of HTS-FP in terms of scaffold diversity is likely
due to its inherent capability of scaffold hopping, which results
in the retrieval of a more diverse set of biologically active
scaffolds upon expansion of initial hits. In addition, HTS-FP has
the ability to avoid the selection of chemotypes that, in general,
have no biological relevance, a capability of which ECFP4 is
exempt being prone to activity cliffs,3,20 i.g., pairs of molecules
that are structurally similar but exhibit large differences in
activity. For hit expansion, HTS-FP consistently outperforms
other methods in both compound retrieval and scaffold
retrieval regardless of whether the seed compounds were
selected on the basis of chemical diversity or biological diversity
or randomly (Figure 6 and Supplementary Figure S8).
We show here that by rationally selecting 15% of the HTS

library for initial screening and hit expansion on the basis of
diverse biology, we could recover 37% of actives (39% active
scaffolds) on average across the 13 assays. A similar protocol
based on chemical structure yields only 29% of actives (29%
active scaffolds). In conclusion, plate selection and hit
expansion based on HTS-FP on average proves more efficient
than chemical structure-based methods in terms of retrieving
active compounds and diverse scaffolds.

3. Biological Relevance of HTS-FP Clusters. In general,
it is accepted that similar chemical structure of compounds
corresponds to related biological effect.21 Correspondingly, by
calculating gene enrichments on groups of structurally similar
compounds, we observe that compounds that share the same
chemotype tend to also modulate the same targets. We show
gene enrichments22 (p-value < 0.05) for scaffold clusters
(Supporting Information 7). In a similar manner, if we cluster
on the basis of compounds’ bioactivity using HTS-FP
(Methods), we also find that target genes are enriched in
HTS-FP clusters (Supplementary Figure S9), which is expected
since the HTS-FP clustering protocol ensures that cluster
members modulate similar proteins in the biochemical assays
and similar phenotypes in the cell-based assays.
Indeed, the main feature of HTS-FPs is the inclusion of cell-

based assays that contribute with information about the
compounds’ effects on complex cellular systems and processes.
In this section, we analyze the extent to which a clustering of
compounds by HTS-FP reflects a grouping of compounds by
related biology, not just by similar genes. By looking at the
enrichment of Gene Ontology (GO) categories23 (cellular
components, biological processes, and molecular functions)
within HTS-FP clusters, we want to assess how often
bioactively similar compounds also have similar effects on
cellular functions and processes.

GO-Term Enrichment. For compounds in each HTS-FP
cluster, we identify relationships between compounds and
genes using in-house and public chemogenomics data. Given
the target genes per cluster, we can query for their associated
GO terms24 and evaluate the frequency of occurrence of a
certain GO term within a cluster. GO terms “describe gene
products in terms of their associated biological processes,
cellular components, and molecular functions in a species-
independent manner”.25 The GO term enrichment in HTS-FP

Figure 5. Flowchart of the protocol for plate diversity selection and hit
expansion. Using either HTS-FP or scaffold clusters of the screening
collection (A), a 750 diversity subset of plates is selected (B) for initial
screening. Actives (“seeds”) found in that subset (C) are then
expanded in silico using either HTS-FP or ECFP4 similarity methods
(D), and the top ranking 10,000 compounds are sent for a follow-up
screening (E).
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clusters is compared to scaffold clusters and random clusters as
controls.
We define as “GO-group” a set of compounds that belong to

the same cluster and share the same enriched GO term. In
Figure 7C and in more detail in Supplementary Figure S10, we
show distributions of the observed GO-group sizes for HTS-FP

clusters for all three GO categories. The area under the group
size-distributions shows the number of GO-terms enriched by
each clustering method (Figure 7 and Supplementary Figure
S10). Clearly, HTS-FP clusters enrich for far more GO-terms
than the random clusters, whose distribution quickly decays to
zero for GO-groups larger than 13 compounds. We can see that

Figure 6. Plate diversity benchmark and hit expansion based on HTS-FP similarity methods (green), chemical structure (orange), and random plate
selction (black). The filled boxes correspond to “seed” compounds collected from a diversity set selection corresponding to 13 different assays. The
hollow boxes correspond to hit expansion from 10,000 cherry picks selected using ECFP4 similarity (orange) and HTS-FP similarity (green).
Numbers on the right-hand column specify total amount of actives per assay.

Figure 7. (A, B, D) Groups of compounds that belong to the same HTS-FP cluster and share the same GO term (biological processes (red), cellular
components (green), and molecular functions (purple)) defined as GO-groups. (C) GO-group size distribution for each GO-term enriched in HTS
clusters. In black, GO-group size distribution for random clusters. The distribution for random functions and components are comparable and
smaller respectively and omitted here (Supplementary Figure S10).
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GO-groups vary in size, but small groups are very frequent even
in random clusters. However, larger GO-groups (size >30) of
bioactively similar compounds modulating same cellular
processes and biological functions are inherent to HTS-FP
clusters. Surprisingly, HTS-FP clustering yields many GO-
groups that are larger than 50 compounds for all three GO
categories.
Importantly, compounds in HTS-FP GO-groups do not

always share the same chemical structure nor target the same
genes, yet they participate in related cellular processes and
functions (biologically similar). For example, Compounds
C29−31 in Figure 7A are known to target the G-Protein
Coupled Receptor (GPCR) signaling pathway but the reported
targets (HTR1A, ADRA2C, CNR2, GPR55) belong to four
different GPCR subfamilies. Methoxamine (C30) and
acebutolol (C29) share a common substructure, whereas
anandamide (C31) is a fatty acid. Similar chemical diversity
can be observed for compounds in Figure 7B and D. These
examples show that chemical similarity of compounds is not
required for biological similarity and that HTS-FP could be
used to target a certain phenotype in a focused screen.
We further explore the relationship between chemical

similarity and biological similarity in both HTS-FP clusters
and chemical clusters (Figure 8). Biological similarity is
calculated on the basis of GO processes and functions
modulated by compounds within a cluster; chemical similarity
is assessed using ECFP4 (Methods). Chemical similarity in
HTS-FP clusters tends to be lower than 0.5, whereas for
scaffold clusters it is mostly above 0.5, which is anticipated since
by design scaffold clusters have the same chemotype. Most
HTS-FP clusters (57%) have higher biological similarity than
would be expected in random clusters. However, scaffold
clusters tend to have higher biological similarity than HTS-FP
clusters. This is expected since many scaffold clusters originate
from congeneric series especially designed to test the SAR of
specific targets.
In short, we have shown that HTS-FP clusters enrich for GO

terms, suggesting that HTS-FP groups compounds on the basis
of their interactions with targets in the cell. HTS-FP clusters are
a useful way to organize compound data because they capture
bioactivity associations between molecules at many levels (e.g.,
target, molecular function, biological process, or cellular
component). HTS-FP clusters can be used, for example, to
assess a phenotypic screen. Starting from a cell-based assay
hitlist, a hypothesis can be generated. Potential pathway targets
can be identified by looking at the enriched target genes within
HTS-FP clusters where hit compounds are found. The relevant
biological processes, functions, and components then can be
annotated by looking into the common GO-groups among the
hits. To test the hypothesis, additional compounds from the
same HTS-FP clusters can be assayed in the phenotypic screen
or against the predicted targets.
Conclusion. We have shown that fingerprints based on

biological activity profiles can provide effective predictions on
the cellular response of compounds without recourse to
chemical structure similarity. The robustness of predictions
using HTS-FP is verified in virtual screening benchmarks and in
the hit expansion of seed compounds for cherry picking. We
show that by introducing biodiversity in HTS libraries we can
increase not only the hit rate but also the chemical diversity in
hit compounds identified. With a workflow based on
biodiversity selection and expansion using HTS-FP, we capture
∼37% of an assay’s actives by only screening 15% of the

collection. Furthermore, the GO-term enrichment of HTS-FP
clusters of compounds indicates that bioactively similar
compounds tend to target genes that operate jointly in the
cell. Previous studies by Keiser et al.1 show that protein targets
may be quantitatively related by the chemical similarity of their
ligands. Here we show that the reverse is also true: even in the
absence of chemical similarity, ligands may be quantitatively
grouped by the biological closeness of their targets. In this
context, HTS-FP therefore become a powerful way of finding
those compounds that are bioactively but not structurally
related. All in all, focusing on the bioactivity of compounds,
HTS-FP present an alternative approach to similarity searches,
revealing additional chemotypes that open new opportunities in
chemical and patent space.
In summary, HTS-FP represent a heuristic way to system-

atize assay data from various sources into a machine learning
protocol to make valuable predictions for compound similarity,
selection, and target prediction. Its success relies on making the
most of the accumulated knowledge of a screening facility,
creating value out of both active and inactive compounds, and

Figure 8. Mean chemical similarity versus GO-term similarity in HTS-
FP (green) and scaffold clusters (orange), classified by GO categories
(A) functions and (B) processes. Data points correspond to clusters that
have higher biological similarity to what would be expected by random
(p-value <0.05, Methods).
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incorporating the differential activity of molecules across targets
and pathways.

■ METHODS
1. HTS Fingerprints Definition. Z-scores of percent inhibition

values are calculated for each of the 195 assays in the HTS-FP. The
vector of a compound’s normalized percent inhibition values across all
assays creates a profile of its bioactivity as its HTS fingerprint. Because
the in-house compound collection is always expanding, it is natural
that the earlier assays have fewer compounds tested and the newer
compounds have missing activity data in their fingerprints. A
distribution of the effective HTS fingerprint sizes for compounds in
the collection is provided in Supplementary Figure S1. Because of the
sparse nature of the HTS-FP matrix, we used all possible screening
data, even if data redundancies could arise from members of similar
target families (Supporting Information 1.2).
When comparing the HTS-FP of two compounds, it is only relevant

to examine the subset of assays that both compounds share. Missing
data from incomplete assays is incorporated as a factor weighting the
similarity score.
A similarity metric was derived combining both the numerical

correlation of the activity z-scores, using the Pearson correlation
coefficient, and the number of assays in common between the
compounds. This is done to prevent bias resulting from compounds
having a smaller number of assays defined being more able to achieve
higher numerical correlations. This “Sim Score” is defined as

= + ×
⎡
⎣⎢
⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥x y

x y
x ySim Score( , )

coverage( , )
2

0.5 Pearson( , )

(1)

where coverage(x,y) is defined as the number of assays in common by
the probe (x) and test compound (y) relative to the number of assays
for the probe compound:

=
∩

x y
N N

N
coverage( , )

e

probe test

prob (2)

This scoring system balances the linear correlation of the activity
values by the fractional overlap of the assays in both fingerprints. If a
test compound shares every assay with the probe, the Sim Score will
equal the Pearson correlation. Otherwise the Pearson correlation will
be penalized according to the length of the probe fingerprint. The
approach we have taken to attend to the sparseness of the data make
the HTS-FP still very robust in its applications as shown in the scaffold
recalls and plate diversity selection. More details can be found in
Supporting Information 1.3.
2. HTS-FP Clusters. From the ∼1.5 million compounds in the

corporate collection, only the 360,105 compounds with less than 60%
missing values in the HTS-FP are considered in the initial clustering
protocol. The rest of the compounds are later assigned to their
corresponding cluster on the basis of maximum similarity to a cluster
center. Compounds with missing data are similar to many compounds,
and therefore they tend to become cluster centers and prevent the
clustering structure from converging. The procedure we choose,
therefore, biases uncertainty toward similarity, for the purposes of the
applications we describe in Section 3.
Clustering is done using the K-means algorithm implemented in R.

24 The distance metric is Euclidean, adapted to missing data. Once the
optimal number of clusters is selected, the best cluster set is chosen on
the basis of minimal clustering error, from 100 independent K-means
runs with 100 iterations each. HTS-FP clusters are used in the
applications C.1 and C.3. Further details on the clustering protocol
and choice of cluster centers can be found in Supporting Information
4.
3. Applications. 3.1. HTS-FP Applied to Virtual Screening and

Scaffold Hopping. A benchmarking set is constructed with public
domain compounds that have more than 40% non-zero values in the
HTS-FP. Compounds with activities <5 μM against a target are
considered active, and the rest are used as background sets. Scaffolds

are calculated according to the definition of Bemis and Murcko.26

Twenty-six targets are chosen to cover a broad variety of target families
including GPCRs, kinases, ion channels, receptors, proteases, trans-
porters, and enzymes. Importantly, none of these benchmark targets is
present in the HTS-FP. A complete list of target families is shown in
Supporting Information 4. Virtual screening using HTS-FP similarity is
compared to an established 2D similarity searching method, Extended
Connectivity Atom Environment Fingerprint with radius 4 (ECFP4)
using Tanimoto similarity,27 following identical protocols of active
compound and scaffold retrieval. The one nearest neighbor (1-NN)
similarity search strategy28 is applied to sort the database by similarity
score.

The active compound enrichment protocol assesses the capability of
HTS-FP to recall active compounds from a background of inactive
compounds. Compounds in active train and test sets have non-
overlapping scaffolds. To benchmark scaffold hopping we follow the
protocol proposed by Bajorath et al.29 For each target, every active
scaffold is used as a set of probes to retrieve other active scaffolds. For
each target, we calculate active compound enrichment (ACE) as the
number of actives found in the top 1% of the sorted database (10,259
compounds) and ROC scores as the area under the ROC curve.
Results are reported in Figure 1 and Supplementary Table S4. Details
on the benchmark database and protocol can be found in Supporting
Information 4.

3.2. Plate Diversity Selection. HTS-FP are used to cluster the
Novartis collection, grouping compounds that share similar bioactivity
profiles across 195 assays. Under the assumption that compounds that
belong to different clusters are likely to target different sets of genes,
we assess the biodiversity of an HTS plate according to the number of
distinct HTS-FP clusters associated with the plate’s compounds. The
Novartis HTS compound collection consists of 5029 384-well plates.
The objective is to select a bioactively diverse and non-redundant set
of 710 plates19 that captures most of the biological diversity of the
collection. Plate selection is then followed by hit expansion using
HTS-FP similarity (Figure 5).

We carry out a retrospective validation benchmark to assess whether
using biological diversity to select plates is more effective than
chemical diversity or random selection. The goals of the validation
protocol are (i) to predict the differential yield in active compounds
obtained by screening a subset of plates as compared to screening the
full collection and (ii) to determine which diversity selection method
yields more active compounds.

Plate Selection. We identified the HTS-FP clusters for all
compounds of each plate and subsequently sorted the plates by
decreasing number of HTS-FP clusters present. The top ranking most
diverse plate is selected for the biodiverse plate collection. The
remaining plates are resorted according to the number of unseen
clusters they contribute to the biodiverse library and the top plate is
selected. Every time the plates are sorted, the top ranking diverse plate
is incorporated and the process iteratively continues until there are no
unseen clusters to be added to the reduced set. Plate selection is thus
carried out in a cumulative way, ensuring that selected plates are not
only biologically diverse but also differ in content among each other.

This biodiverse plate selection was compared against a similar
selection that relies on the chemical structure of compounds instead.
For this chemical diversity selection of plates, clustering of compounds
was based on identical Murcko scaffolds as previously described.18

Hit Expansion. The study has two parts: discovery of seeds and
expansion by cherry picking. “Seeds” are those active compounds
discovered in the 710-plate diversity set. “Seeds” are then expanded in
silico to the full compound collection. In practice, hit expansion
involves a computational prediction of compounds using virtual
screening methods. A hit list of “seeds” from the plate diversity set is
compared to each compound in the remaining plates of the collection
using a similarity metric. The top 10,000 scoring compounds are
reported for each assay as hit expansion library and are individually
“cherry picked” from the screening deck for a second round of testing
(Figure 5). Biodiverse library “seeds” are expanded using HTS-FP
similarity. Alternatively, chemical diversity “seeds” are expanded using
ECFP4 similarity.
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Validation and Results. Thirteen assays are selected covering
different target families and assay technologies (Figure 6). Importantly,
the selected 13 screens correspond to full HTS campaigns (>1.3
million compounds). Because primary or more accurate data is not
available for the totality of the screens, we resort to the use of z-scores
as described in Methods above, considering active only those
compounds with z-score ≤ −3. Furthermore, the 13 validation targets
have been removed from both the HTS clustering protocol and HTS-
FP to avoid a putative bias of the diversity set. The incorporation of
cumulative sorting of plates, increases approximately 6.5% the
performance of biodiversity plate selections and 1.6% for chemical
diversity selections as compared to sorting of plates based only on the
similarities among compounds without taking into account interplate
redundancy (data not shown).
3.3. GO-Term Enrichment Studies. HTS-FP clusters are described

in Methods. Scaffold clusters are defined by compounds sharing
identical Murcko chemical scaffold.26 Random clusters are chosen by
random sampling from the collection and have the same size
distribution as the HTS-FP clusters.
For each cluster, bioactivity of its compounds is determined using

data from GVK and ChEMBL as well as in-house data. Compounds
with activity <5 μM are considered active, and the set of target genes is
identified. Genes for all species are considered, and orthologs are
grouped together under the same gene symbol.
For each target, Gene Ontology (GO) terms (biological processes,

molecular functions, and cellular components) are identified.23 The
enrichment of GO terms in a cluster can be calculated using Fisher’s
exact test (one-sided, function in R Stats package25). The contingency
table describes the amount of times that a certain GO term occurs in a
cluster as compared to its general occurrence in the available data from
the entire collection. P-values are corrected for multiple testing using
the Bonferroni correction. A particular GO term is considered to be
enriched in a cluster if its p-value <0.05. Groups of compounds that
share the same cluster and the same GO term are counted (hereafter
GO groups) and distributions of GO group sizes are calculated for
components, functions, and processes. Clusters with less than 10
compound-GO term relationships are excluded.
It is important to note that a single compound could enhance the

occurrence of a specific GO term in a cluster, e.g., the scenario where a
compound hits several genes that belong to an infrequent biological
process. To control for such common but uninteresting events,
enrichment results obtained with HTS-FP clusters are compared to
those from random clusters. The protocol is repeated for 10 different
random cluster structures. A mean GO group size distribution is
calculated with error bars from standard deviation.
We calculated for each cluster its mean pairwise similarity (mps) in

both the chemical and biological domains. Each compound or target
(in the following referred to as entity) is expanded to a set of features.
In the case of chemical similarity we used Scitegic’s circular atom
environments (ECFP4) as features, whereas for biological similarity we
used the GO terms of known targets of compounds. The similarity
measure used in both cases was the Tanimoto coefficient. The mps is
then the average similarity of all pairs of entities in a cluster. For a
given cluster size a null distribution of the mps was obtained by
random sampling (1000 times) of the same number of targets as in the
cluster under assessment. This null distribution was used to determine
empirical, one-sided p-values.
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